Definite Integral as Limit of a Sum

IMPORTANT

Definite Integral as Limit of a Sum: Overview

This topic covers concepts, such as, Definite Integral as the Limit of a Sum etc.

Important Questions on Definite Integral as Limit of a Sum

HARD
IMPORTANT

The value of limnr=1r=4nnr3r+4n2 is equal to

HARD
IMPORTANT

The value of abfxdx=balimn1n[fa+fa+h+...+fa+n1h], where h=banf(x)=x2+x+2; a=0, b=2 as limits of sum would be

HARD
IMPORTANT

The value of limn1n+1+1n+2+...+16n is

HARD
IMPORTANT

limn1n+1+1n+2+...+16n  is equal to

HARD
IMPORTANT

If  sinx1t2f(t)dt=1sinx, then f(13)  is:

MEDIUM
IMPORTANT

Among

S1:limn1n2(2+4+6++2n)=1

S2:limn1n16115+215+315++n15=116

MEDIUM
IMPORTANT

Consider:

Statement 1: limn1n21+2+3+...+n=1

Statement 2:limn1n16115+215+315+...+n15=116

HARD
IMPORTANT

limnn3+1n3+2.....nn32n33n is

MEDIUM
IMPORTANT

limn12n11-12n+11-22n+11-32n+...+11-2n-12n is equal to

HARD
IMPORTANT

Select the incorrect step while calculating definite integral 13x2+e-xdx as limit of sums.

I:f(x)=x2+e-x, a=1, b=3, h=2n

II:13x2+e-xdx=2limn1nf(1)+f1+2n+f1+4n+...+f1+2n-1n

III:13x2+e-xdx=2limn1n1+e-1+1+2n2+e-1+2n+1+4n2+e-1+4n+...+1+2n-1n2+e-1+2n-1n

IV: 13x2+e-xdx=2limn1n1+1+2n2+1+4n2+...+1+2n-1n2+e-1+e-1+2n+e-1+4n+...+e-1+2n-1n

V: 13x2+e-xdx=2limn1n1-1+2nn1-1+2n+e-11-e-1+2nn1-e-1+2n

HARD
IMPORTANT

Evaluate 23x2 dx as the limit of a sum

HARD
IMPORTANT

limn11+n5+2425+n5+3435+n5++n4n5+n5=

HARD
IMPORTANT

For positive integer n, define fn=n+16+5n-3n24n+3n2+32+n-3n28n+3n2+48-3n-3n212n+3n2++25n-7n27n2. Then, the value of limnfn is equal to

HARD
IMPORTANT

Let fx=limn+nnx+nx+n2x+nnn!x2+n2x2+n24x2+n2n2xn for all x>0. Then

HARD
IMPORTANT

limnn2n2+1n+1+n2n2+4n+2+n2n2+9n+3+...+n2n2+n2n+n is equal to

HARD
IMPORTANT

The value of limn12+11-n3+22+22-n3+32+33-n3............+n2+nn-n3 is equal to 

HARD
IMPORTANT

The value of limn1nnλ(n+1)λ(n+2)λ(n+n)λ1n is equal to

MEDIUM
IMPORTANT

For α>-1 and β>-1, the value of limnnβ-α1α+2α++nα1β+2β++nβ is

MEDIUM
IMPORTANT

Suppose f is a differentiable function on [0,1], such that the derivative of f is continuous on [0,1]. Let f(1)=6 and f(0)=1 Then limn1nk=1nfknf'kn is